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Presentation OutlinePresentation Outline

• Approximations in MDO
qMotivation for using approximations
q Approximation techniques and concerns
qOverview of response surface and kriging models

• Multidisciplinary Design of an Aerospike Nozzle
q Introduce example
qGeometry and MDO decomposition
q Approximation specifics
qGraphical comparison and error analysis
qOptimization study and results

• Closing Remarks and Ongoing Work
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Why Use Approximations in MDO?Why Use Approximations in MDO?

• Gain a better understanding of relationship between
design variables, X, and responses, Y

• Facilitate integration of domain dependent analysis
codes and simulations

• Provide surrogate approximations for rapid concept
exploration and evaluation

• Find better solutions through improved convergence
(smoothing of non-linearities and numerical noise)

• Identify important design variables through Analysis of
Variance (ANOVA)
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Approximation TechniquesApproximation Techniques
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Response Surfaces (Myers and Montgomery, 1996)Response Surfaces (Myers and Montgomery, 1996)

• General form of a response surface:

y(x) = f(x) + ε

where:
q y(x) is unknown function of interest

q f(x) is a polynomial function of x
q ε ~ i.i.d. N(µ=0, σ2≠0, Cov=0)

• Remarks:
q f(x) dictates “global” behavior of model
q f(x) is often first- or second-order polynomial
q statistical measures (e.g., t-statistic and F-test) for validation

may not be applicable when computer codes are deterministic

Saddle

Ridge

Rising
Ridge

Dome

Example Response Surfaces
(Box and Draper, 1987)
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Overview of Kriging (Sacks, et al., 1989)Overview of Kriging (Sacks, et al., 1989)

• General form of a kriging model:

y(x) = f(x) + Z(x)

where:
q y(x) is unknown function of interest

q f(x) is a known polynomial function of x
q Z(x) ~ N(µ=0, σ2≠0, Cov≠0)

• Remarks:
q kriging model interpolates the sampled data
q f(x) dictates “global” behavior of model in the design space
q f(x) is often taken as a constant term, β
q Z(x) dictates “local” behavior of the model

Example
Kriging Model
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DOE/RSM versus DACE/Kriging (Booker, 1996)DOE/RSM versus DACE/Kriging (Booker, 1996)

Experimental
Design

Input settings at
which to obtain

output

Models
Inexpensive model
to estimate output

at untried input

Validation
Determine

adequacy of fit

t-tests and F-statistics
R-square

Residual plots

Cross validation
Integrated mean square error

DOE/RSM DACE/Kriging

Least squares fit Maximum likelihood estimate

Account for variability Space filling
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Aerospike Nozzle Example (Korte, et al., 1997)Aerospike Nozzle Example (Korte, et al., 1997)

• Objective: Compare and contrast the use of second-
order response surface models and kriging models in
the multidisciplinary design of an aerospike nozzle

Aerospike NozzleVenture Star RLV
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Aerospike Nozzle: GeometryAerospike Nozzle: Geometry

➀

• Three design variables:
q starting thruster angle
q base length
q exit base height

➁

➂
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Aerospike Nozzle: MDO DecompositionAerospike Nozzle: MDO Decomposition

Aerospike Components and
Flow-Field Characteristics

Multidisciplinary Domain
Decomposition
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Aerospike Nozzle: MDO InteractionsAerospike Nozzle: MDO Interactions
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Aerospike Nozzle: Approximation SpecificsAerospike Nozzle: Approximation Specifics

• Design variables (3):
q Angle, height, length

• Sampling strategy:
q 25 point randomized OA

• Model choice:
q 2nd order response surface
q Kriging : β + Gaussian corr. fcn.

• Responses of interest (3):
q Thrust - output from CFD code
qWeight - output from NASTRAN optimization
qGLOW - tabulated as a function of thrust and weight
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2-D Projection

3-D View of Sample Points
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Thrust Model ContoursThrust Model Contours
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Weight Model ContoursWeight Model Contours
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GLOW Model ContoursGLOW Model Contours
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GLOW Model Contours–End ViewGLOW Model Contours–End View
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Approximation Model ValidationApproximation Model Validation

• Twenty-five (25) additional validation points are used to
test the accuracy of the approximations

* *rootMSE = y − ˆ y 
ne

 
 
  

 
 

i=1

ne

∑*error = y − ˆ y 

RS Model - 2nd order polynomial
weight thrust glow

Max ABS(error*) 19.57% 0.032% 3.68%
Min ABS(error) 0.32% 0.001% 0.05%

Average ABS(error) 2.44% 0.012% 0.53%
Root MSE** 4.54% 0.015% 0.90%

Kriging Model - constant term
weight thrust glow

Max ABS(error) 17.23% 0.048% 3.43%
Min ABS(error) 0.02% 0.001% 0.04%

Average ABS(error) 2.51% 0.012% 0.59%
Root MSE 4.37% 0.018% 0.89%

2
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Aerospike Nozzle: Optimization StudyAerospike Nozzle: Optimization Study

• Four (4) optimization problems are formulated and
solved to compare further approximation accuracy

Find: angle, height, and length of the nozzle
Satisfy:

q Bounds: -1 ≤ angle, height, length ≤ 1
qConstraint limits on responses not in objective function

Objective:

• GRG algorithm in OptdesX; three (3) starting points

Single discipline

1. Maximize Thrust
2. Minimize Weight

Multiple disciplines

3. Maximize Thrust/Weight Ratio 
4. Minimize Gross Lift-Off Weight
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Optimization Results: Minimize GLOWOptimization Results: Minimize GLOW

Approx. 
Model

Avg. # 
Analysis 

Calls

Avg. # 
Gradient 

Calls Design Variable Response
Predicted 
Optimum

Verified 
Optimum % Error

Angle 0.616 Thrust 1.0013 0.9957 0.56%
RS 30.67 3.33 Height -1.000 Weight 0.8969 0.8617 4.09%
Models Length 1.000 Thr/Wt 1.0251 1.0286 -0.34%

GLOW 0.966 1.0146 -4.79%
Angle 0.764 Thrust 1.0009 1.0006 0.04%

Kriging 57.67 6.33 Height -0.833 Weight 0.906 0.8732 3.75%
Models Length 0.676 Thr/Wt 1.0228 1.0302 -0.72%

GLOW 0.9675 0.968 -0.05%

• Kriging models typically require
q 1-3 more gradient calls
q 2-3 times more analysis calls

• However, predicted optimum design is more accurate,
particularly in the multidisciplinary design cases



Email: tws8@psu.edu
Department of Mechanical & Nuclear Engineering
Department of Industrial & Manufacturing Engineering

Closing RemarksClosing Remarks

• Demonstrated usefulness of approximation models in a
realistic, engineering application

• Second-order response surface models and kriging
models yield comparable results in this example as
verified through:
q graphical comparison
q additional validation points
q optimization study

• Kriging model with constant “global” model and “local”
Gaussian correlation function is as accurate as a full
second-order response surface model



Email: tws8@psu.edu
Department of Mechanical & Nuclear Engineering
Department of Industrial & Manufacturing Engineering

Ongoing and Future WorkOngoing and Future Work

• Additional testing of the utility of kriging approximations
qWhich correlation function is best?
q Should a linear or quadratic “global” model be employed?

• Usefulness of different experimental designs
q “Classical” DOE (2): central composite; Box-Behnken
q “Space-filling” DOE (9): random, minimax, maximin, IMSE

optimal, orthogonal, and orthogonal-array based Latin
hypercubes; orthogonal arrays; Hammersley sampling
sequences; uniform designs

• Aerospike Nozzle Example
qDecompose disciplines, build separate approximations for

each, and then optimize using different MDO formulations
qNumerical noise in the data


